References
1. DeLisi LE, Szulc KU, Bertisch HC, et al. Understanding structural brain changes in schizophrenia. Dialogues in Clinical Neuroscience 2006;8(1):71-78.
2. Mohammadi A, Rashidi E, Amooeian VG. Brain, blood, cerebrospinal fluid, and serum biomarkers in schizophrenia. Psychiatry Res 2018;265:25-38. doi: 10.1016/j.psychres.2018.04.036 [published Online First: 2018/04/24]
3. Karlsgodt KH, Sun D, Cannon TD. Structural and Functional Brain Abnormalities in Schizophrenia. Current directions in psychological science 2010;19(4):226-31. doi: 10.1177/0963721410377601
4. Gaser C, Volz H-P, Kiebel S, et al. Detecting Structural Changes in Whole Brain Based on Nonlinear Deformations—Application to Schizophrenia Research. NeuroImage 1999;10(2):107-13. doi: http://dx.doi.org/10.1006/nimg.1999.0458
5. Hare RD. Manual for the Revised Psychopathy Checklist (2nd ed.). Toronto, Canada: Multi-Health Systems 2003.
6. Haatveit B, Jensen J, Alnæs D, et al. Reduced load-dependent default mode network deactivation across executive tasks in schizophrenia spectrum disorders. NeuroImage: Clinical 2016;12(Supplement C):389-96. doi: https://doi.org/10.1016/j.nicl.2016.08.012
7. Zemankova MP, Losak DJ, Czekoova DK, et al. Theory of mind skills are related to resting-state fronto-limbic connectivity in schizophrenia. Brain connectivity;0(ja):null. doi: 10.1089/brain.2017.0563
8. Jiang Y, Luo C, Li X, et al. White-matter functional networks changes in patients with schizophrenia. Neuroimage 2018 doi: 10.1016/j.neuroimage.2018.04.018 [published Online First: 2018/04/17]
9. van Lutterveld R, Diederen KM, Otte WM, et al. Network analysis of auditory hallucinations in nonpsychotic individuals. Human brain mapping 2014;35(4):1436-45. doi: 10.1002/hbm.22264 [published Online First: 2013/02/22]
10. Wang L, Zou F, Shao Y, et al. Disruptive changes of cerebellar functional connectivity with the default mode network in schizophrenia. Schizophr Res 2014;160(1-3):67-72. doi: 10.1016/j.schres.2014.09.034 [published Online First: 2014/12/03]
11. Dedic N, Pohlmann ML, Richter JS, et al. Cross-disorder risk gene CACNA1C differentially modulates susceptibility to psychiatric disorders during development and adulthood. Mol Psychiatry 2017 doi: 10.1038/mp.2017.133
12. Hochberger WC, Combs T, Reilly JL, et al. Deviation from expected cognitive ability across psychotic disorders. Schizophrenia Research doi: 10.1016/j.schres.2017.05.019
13. Ammari N, Heinrichs RW, Pinnock F, et al. Preserved, deteriorated, and premorbidly impaired patterns of intellectual ability in schizophrenia. Neuropsychology 2014;28(3):353-8. doi: 10.1037/neu0000026 [published Online First: 2014/03/19]
14. DeLisi LE, Tew W, Xie S, et al. A prospective follow-up study of brain morphology and cognition in first-episode schizophrenic patients: preliminary findings. Biol Psychiatry 1995;38(6):349-60. [published Online First: 1995/09/15]
15. Rossetti I, Brambilla P, Papagno C. Metaphor Comprehension in Schizophrenic Patients. Frontiers in Psychology 2018;9:670. doi: 10.3389/fpsyg.2018.00670
16. Bonfils KA, Lysaker PH, Minor KS, et al. Affective empathy in schizophrenia: a meta-analysis. Schizophr Res 2016;175(1-3):109-17. doi: 10.1016/j.schres.2016.03.037 [published Online First: 2016/04/21]
17. Savla GN, Vella L, Armstrong CC, et al. Deficits in domains of social cognition in schizophrenia: a meta-analysis of the empirical evidence. Schizophr Bull 2013;39(5):979-92. doi: 10.1093/schbul/sbs080 [published Online First: 2012/09/06]
18. Fett AK, Viechtbauer W, Dominguez MD, et al. The relationship between neurocognition and social cognition with functional outcomes in schizophrenia: a meta-analysis. Neurosci Biobehav Rev 2011;35(3):573-88. doi: 10.1016/j.neubiorev.2010.07.001 [published Online First: 2010/07/14]
19. Ventura J, Wood RC, Hellemann GS. Symptom domains and neurocognitive functioning can help differentiate social cognitive processes in schizophrenia: a meta-analysis. Schizophr Bull 2013;39(1):102-11. doi: 10.1093/schbul/sbr067 [published Online First: 2011/07/19]
20. Szepesi Z, Manouchehrian O, Bachiller S, et al. Bidirectional Microglia-Neuron Communication in Health and Disease. Front Cell Neurosci 2018;12:323. doi: 10.3389/fncel.2018.00323 [published Online First: 2018/10/16]
21. Belarbi K, Arellano C, Ferguson R, et al. Chronic neuroinflammation impacts the recruitment of adult-born neurons into behaviorally relevant hippocampal networks. Brain, Behavior, and Immunity 2012;26(1):18-23. doi: http://dx.doi.org/10.1016/j.bbi.2011.07.225
22. Cheray M, Joseph B. Epigenetics Control Microglia Plasticity. Front Cell Neurosci 2018;12:243. doi: 10.3389/fncel.2018.00243 [published Online First: 2018/08/21]
23. Sominsky L, De Luca S, Spencer SJ. Microglia: Key players in neurodevelopment and neuronal plasticity. Int J Biochem Cell Biol 2018;94:56-60. doi: 10.1016/j.biocel.2017.11.012 [published Online First: 2017/12/05]
24. Ordóñez AE, Luscher ZI, Gogtay N. Neuroimaging findings from childhood onset schizophrenia patients and their non-psychotic siblings. Schizophr Res 2016;173(3):124-31. doi: 10.1016/j.schres.2015.03.003 [published Online First: 2015/03/31]
25. Rapoport JL, Gogtay N. Childhood onset schizophrenia: support for a progressive neurodevelopmental disorder. Int J Dev Neurosci 2011;29(3):251-8. doi: 10.1016/j.ijdevneu.2010.10.003 [published Online First: 2010/10/20]
26. Thompson PM, Vidal C, Giedd JN, et al. Mapping adolescent brain change reveals dynamic wave of accelerated gray matter loss in very early-onset schizophrenia. Proc Natl Acad Sci U S A 2001;98(20):11650-5. doi: 10.1073/pnas.201243998 [published Online First: 2001/09/27]
27. Schmitt A, Falkai P, Papiol S. Neurodevelopmental disturbances in schizophrenia: evidence from genetic and environmental factors. J Neural Transm (Vienna) 2023;130(3):195-205. doi: 10.1007/s00702-022-02567-5 [published Online First: 2022/11/13]